50 research outputs found

    Eye Opening Rapidly Induces Synaptic Potentiation and Refinement

    Get PDF
    AbstractNMDA receptor (NMDAR)-mediated increases in AMPA receptor (AMPAR) currents are associated with long-term synaptic potentiation (LTP). Here, we provide evidence that similar changes occur in response to normal increases in sensory stimulation during development. Experiments discriminated between eye opening-induced and age-dependent changes in synaptic currents. At 6 hr after eye opening (AEO), a transient population of currents mediated by NR2B-rich NMDARs increase significantly, and silent synapses peak. Sustained increases in evoked and miniature AMPAR currents occur at 12 hr AEO. Significant changes in AMPAR:NMDAR evoked current ratios, contacts per axon, and inputs per cell are present at 24 hr AEO. The AMPAR current changes are those seen in vitro during NMDAR-dependent LTP. Here, they are a consequence of eye opening and are associated with a new wave of synaptic refinement. These data also suggest that new NR2B-rich NMDAR currents precede and may initiate this developmental synaptic potentiation and functional tuning

    Editorial: Cell and molecular signaling, and transport pathways involved in growth factor control of synaptic development and function

    Get PDF
    Since the discovery of nerve growth factor (NGF) more than a half century ago (Levi-Montalcini and Cohen, 1960), the prototypic neurotrophin family has included brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). Neurotrophins bind to the Trk family of receptors, as well as the p75 receptor, to activate multiple intracellular signaling cascades (reviewed by Reichardt, 2006). BDNF receptor tropomyosin receptor kinase B (TrkB) signaling has been extensively studied for its roles in the central nervous system (CNS) ranging from cell survival, axonal and dendritic growth and synapse formation. The pathway mediates long-lasting activity-modulated synaptic changes on excitatory and inhibitory neurons and plays critical roles in circuit development and maintenance. In addition to BDNF, many studies have identified other “growth” or signaling factors in the CNS that play important roles in the development, maintenance, and control of synaptic and circuit function. However, details of the intracellular signaling systems downstream of these events are frequently unexplored. In this Research Topic, we have collected original studies and review articles that present cellular and molecular mechanisms concerning activity-dependent synapse formation and their implications for behavior and brain disorders.National Institutes of Health (U.S.) (Grant 5R01EY006039-27)National Institutes of Health (U.S.) (Grant 5R01EY014074-15

    Retina-Driven Dephosphorylation of the NR2A Subunit Correlates with Faster NMDA Receptor Kinetics at Developing Retinocollicular Synapses

    Get PDF
    We describe a homeostatic mechanism that limits NMDA receptor currents in response to early light activation of a developing visual pathway. During the second postnatal week of rodent retinocollicular development, the C

    A Myosin Va Mutant Mouse with Disruptions in Glutamate Synaptic Development and Mature Plasticity in Visual Cortex

    Get PDF
    Myosin Va (MyoVa) mediates F-actin-based vesicular transport toward the plasma membrane and is found at neuronal postsynaptic densities (PSDs), but the role of MyoVa in synaptic development and function is largely unknown. Here, in studies using the dominantnegative MyoVa neurological mutant mouse Flailer, we find that MyoVa plays an essential role in activity-dependent delivery of PSD-95 and other critical PSD molecules to synapses and in endocytosis of AMPA-type glutamate receptors (AMPAR) in the dendrites of CNS neurons. MyoVa is known to carry a complex containing the major scaffolding proteins of the mature PSD, PSD-95, SAPAP1/GKAP, Shank, and Homer to dendritic spine synapses. In Flailer, neurons show abnormal dendritic shaft localization of PSD-95, stargazin, dynamin3, AMPARs and abnormal spine morphology. Flailer neurons also have abnormally highAMPARminiature current frequencies and spontaneous AMPAR currents that are more frequent and larger than in wild-type while numbers of NMDAR containing synapses remain normal. The AMPAR abnormalities are consistent with a severely disrupted developmental regulation of long-term depression that we find in cortical Flailer neurons. Thus MyoVa plays a fundamentally important role both in localizing mature glutamate synapses to spines and in organizing the synapse for normal function. For this reason Flailer mice will be valuable in further dissecting the role of MyoVa in normal synaptic and circuit refinement and also in studies of neurological and neuropsychiatric diseases where disruptions of normal glutamate synapses are frequently observed.National Institutes of Health (U.S.) (Grant R01-EY014074–17)National Institutes of Health (U.S.) (Grant EY014420

    A Synaptic Strategy for Consolidation of Convergent Visuotopic Maps

    Get PDF
    The mechanisms by which experience guides refinement of converging afferent pathways are poorly understood. We describe a vision-driven refinement of corticocollicular inputs that determines the consolidation of retinal and visual cortical (VC) synapses on individual neurons in the superficial superior colliculus (sSC). Highly refined corticocollicular terminals form 1–2 days after eye-opening (EO), accompanied by VC-dependent filopodia sprouting on proximal dendrites, and PSD-95 and VC-dependent quadrupling of functional synapses. Delayed EO eliminates synapses, corticocollicular terminals, and spines on VC-recipient dendrites. Awake recordings after EO show that VC and retina cooperate to activate sSC neurons, and VC light responses precede sSC responses within intervals promoting potentiation. Eyelid closure is associated with more protracted cortical visual responses, causing the majority of VC spikes to follow those of the colliculus. These data implicate spike-timing plasticity as a mechanism for cortical input survival, and support a cooperative strategy for retinal and cortical coinnervation of the sSC.National Institutes of Health (U.S.) (Grant EY006039

    Microarray analysis of microRNA expression in the developing mammalian brain

    Get PDF
    BACKGROUND: MicroRNAs are a large new class of tiny regulatory RNAs found in nematodes, plants, insects and mammals. MicroRNAs are thought to act as post-transcriptional modulators of gene expression. In invertebrates microRNAs have been implicated as regulators of developmental timing, neuronal differentiation, cell proliferation, programmed cell death and fat metabolism. Little is known about the roles of microRNAs in mammals. RESULTS: We isolated 18-26 nucleotide RNAs from developing rat and monkey brains. From the sequences of these RNAs and the sequences of the rat and human genomes we determined which of these small RNAs are likely to have derived from stem-loop precursors typical of microRNAs. Next, we developed a microarray technology suitable for detecting microRNAs and printed a microRNA microarray representing 138 mammalian microRNAs corresponding to the sequences of the microRNAs we cloned as well as to other known microRNAs. We used this microarray to determine the profile of microRNAs expressed in the developing mouse brain. We observed a temporal wave of expression of microRNAs, suggesting that microRNAs play important roles in the development of the mammalian brain. CONCLUSION: We describe a microarray technology that can be used to analyze the expression of microRNAs and of other small RNAs. MicroRNA microarrays offer a new tool that should facilitate studies of the biological roles of microRNAs. We used this method to determine the microRNA expression profile during mouse brain development and observed a temporal wave of gene expression of sequential classes of microRNAs

    The Conserved VPS-50 Protein Functions in Dense-Core Vesicle Maturation and Acidification and Controls Animal Behavior

    Get PDF
    The modification of behavior in response to experience is crucial for animals to adapt to environmental changes. Although factors such as neuropeptides and hormones are known to function in the switch between alternative behavioral states, the mechanisms by which these factors transduce, store, retrieve, and integrate environmental signals to regulate behavior are poorly understood. The rate of locomotion of the nematode Caenorhabditis elegans depends on both current and past food availability. Specifically, C. elegans slows its locomotion when it encounters food, and animals in a food-deprived state slow even more than animals in a well-fed state. The slowing responses of well-fed and food-deprived animals in the presence of food represent distinct behavioral states, as they are controlled by different sets of genes, neurotransmitters, and neurons. Here we describe an evolutionarily conserved C. elegans protein, VPS-50, that is required for animals to assume the well-fed behavioral state. Both VPS-50 and its murine homolog mVPS50 are expressed in neurons, are associated with synaptic and dense-core vesicles, and control vesicle acidification and hence synaptic function, likely through regulation of the assembly of the V-ATPase complex. We propose that dense-core vesicle acidification controlled by the evolutionarily conserved protein VPS-50/mVPS50 affects behavioral state by modulating neuropeptide levels and presynaptic neuronal function in both C. elegans and mammals.National Institutes of Health (U.S.) (Grant GM024663

    Quantitative autoradiographic localization of NMDA, quisqualate and PCP receptors in the frog tectum

    Full text link
    An organizing role for the (NMDA) receptor/channel has been suggested in the development of the retinotectal projection in Rana pipiens. The regional distributions of NMDA, phencyclidine (PCP) and quisqualic acid (QA) receptors were quantified using in vitro autoradiography in the tectum of normal and surgically produced 3-eyed juvenile frogs. NMDA and QA receptor binding was highest in the pretectum. Of the tectal layers, the superficial retinotectal synaptic zone, layer 9, had the highest amount of NMDA and QA receptor binding. Moderate binding was observed in layer 5, with little binding in the cellular layer 6. No specific [3H]N-(1-[2-thienyl]cyclohexyl piperidine ([3H]TCP) binding was observed in any of the tectal regions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/28018/1/0000454.pd

    PSD95 Suppresses Dendritic Arbor Development in Mature Hippocampal Neurons by Occluding the Clustering of NR2B-NMDA Receptors

    Get PDF
    Considerable evidence indicates that the NMDA receptor (NMDAR) subunits NR2A and NR2B are critical mediators of synaptic plasticity and dendritogenesis; however, how they differentially regulate these processes is unclear. Here we investigate the roles of the NR2A and NR2B subunits, and of their scaffolding proteins PSD-95 and SAP102, in remodeling the dendritic architecture of developing hippocampal neurons (2–25 DIV). Analysis of the dendritic architecture and the temporal and spatial expression patterns of the NMDARs and anchoring proteins in immature cultures revealed a strong positive correlation between synaptic expression of the NR2B subunit and dendritogenesis. With maturation, the pruning of dendritic branches was paralleled by a strong reduction in overall and synaptic expression of NR2B, and a significant elevation in synaptic expression of NR2A and PSD95. Using constructs that alter the synaptic composition, we found that either over-expression of NR2B or knock-down of PSD95 by shRNA-PSD95 augmented dendritogenesis in immature neurons. Reactivation of dendritogenesis could also be achieved in mature cultured neurons, but required both manipulations simultaneously, and was accompanied by increased dendritic clustering of NR2B. Our results indicate that the developmental increase in synaptic expression of PSD95 obstructs the synaptic clustering of NR2B-NMDARs, and thereby restricts reactivation of dendritic branching. Experiments with shRNA-PSD95 and chimeric NR2A/NR2B constructs further revealed that C-terminus of the NR2B subunit (tail) was sufficient to induce robust dendritic branching in mature hippocampal neurons, and suggest that the NR2B tail is important in recruiting calcium-dependent signaling proteins and scaffolding proteins necessary for dendritogenesis.National Institutes of Health (U.S.) (Grant EY014074
    corecore